

A proof of the logical equivalence of inverse and converse

published on December 29, 2022

The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$, and its converse is $q \rightarrow p$.

This logical proof shows that the converse of a conditional entails its inverse (i.e., that $q \rightarrow p \vdash \neg p \rightarrow \neg q$):

- [1] $q \rightarrow p$ // premise
- [2] $\neg q \vee p$ // disjunction from conditional (1)
- [3] $p \vee \neg q$ // commutativity of disjunction (2)
- [4] $\neg \neg p \vee \neg q$ // double negation (3)
- [5] $\neg p \rightarrow \neg q$ // conditional from disjunction (4)

Its reversal proves that inverse entails converse ($\neg p \rightarrow \neg q \vdash q \rightarrow p$):

- [1] $\neg p \rightarrow \neg q$ // premise
- [2] $\neg \neg p \vee \neg q$ // disjunction from conditional (1)
- [3] $p \vee \neg q$ // double negation (2)
- [4] $\neg q \vee p$ // commutativity of disjunction (3)
- [5] $q \rightarrow p$ // conditional from disjunction (4)

Because inverse and converse entail each other ($q \rightarrow p \dashv\vdash \neg p \rightarrow \neg q$), they are logically equivalent: $q \rightarrow p \equiv \neg p \rightarrow \neg q$